
Lecture 3
Object Oriented Programming II

Jumping down the rabbit hole…..

Lecture Overview
 Inheritance
 Motivation
 Syntax
 Overridden method

 Polymorphism
 Static vs Dynamic Binding

 Abstract Class
 Motivation & Syntax
 Design implication

[CS1020E AY1617S1 Lecture 3] 2

Inheritance

Like father, like son

Inheritance : Motivation
 Let’s define a saving account class

 Data :
 account number, balance
 interest rate

 Process:
 withdraw, deposit
 pay_interest

 It is clear that:
 Saving Account shares > 50% code with Bank Account

 Should we just cut and paste the code?

[CS1020E AY1617S1 Lecture 3] 4

Inheritance : Motivation
 Duplicating code is undesirable:

 Hard to maintain
 Need to correct all copies if error is found
 Need to update all copies if modification is needed
 Etc

 Since the classes are logically unrelated:
 Other code that work on one class cannot work on the

other
 Example:

void transfer(BankAcct& fromAcct,
BankAcct& toAcct, double amt);

will not work on saving account objects
(compilation error due to incompatible data type)

[CS1020E AY1617S1 Lecture 3] 5

Inheritance : Motivation
 Object oriented languages allow inheritance
 Derive a new class from another class
 The new class inherits most of the attributes and

methods from the other class

 Terminology:
 If class B is derived from class A, then
 class B is called a child (sub-class) of class A
 class A is called a parent (super-class) of class B

[CS1020E AY1617S1 Lecture 3] 6

Saving Account : Inheritance example
class BankAcct {
protected:

int _acctNum;
double _balance;
... ...

};

class SavingAcct : public BankAcct {
protected:

double _rate; // interest rate

public:
SavingAcct(int anum, double bal, double rate)
: BankAcct(anum, bal) {

_rate = rate; // BankAcct does not have rate
}

void payInterest() {
_balance += _balance * _rate;

}
};

To indicate inheritance

Note that there is no
declaration for account

number and balance, they
are inherited

Special syntax for initializing
base class or object member

Changed from private

[CS1020E AY1617S1 Lecture 3] 7

Observations
 Inheritance greatly reduces the amount

redundant coding
 No (re)definition of account number and balance
 No (re)definition of withdraw() and deposit()

 Improve maintainability:
 E.g. If the withdraw() function is modified in
class BankAcct
 no changes is needed in class SavingAcct

 The code in class BankAcct remains untouched
 Other programs using BankAcct are not affected

[CS1020E AY1617S1 Lecture 3] 8

Saving Accounts : Sample Usage
class BankAcct { // definition not shown };
class SavingAcct { // definition not shown };

int main() {
BankAcct ba1(1234, 500.00); // from Lecture 2
SavingAcct sa1(8888, 999.99, 0.025);

sa1.balance();
sa1.deposit(0.01);
sa1.balance();

sa1.payInterest();
sa1.balance();

return 0;
}

Inherited methods from
superclass

New method in
SavingAcct class

[CS1020E AY1617S1 Lecture 3] 9

Method Overriding
 Sometimes we need to modify the inherited

method:
 To change / extend the functionality
 This is known as method overriding

 In the SavingAcct example:
 The (print) balance() method should be modified to

include the interest rate in output

 To override an inherited method:
 Simply recode the method in the subclass using the

same method header
 Method header refers to the name and parameters

type of the method (also known as method
signature)

[CS1020E AY1617S1 Lecture 3] 10

Method Overriding: Example
class SavingAcct : public BankAcct {
// attributes and other methods not shown

void balance() { // override balance method from BankAcct
cout << "Acc: " << _acctNum

<< ", Bal: " << _balance
<< ", Int: " << _rate << endl;

}
}

 The first two lines of code is exactly the same
as BankAcct's print balance():
 Can we reuse BankAcct's print balance()

instead of re-coding?

[CS1020E AY1617S1 Lecture 3] 11

Calling SuperClass Method

 We can call a super class's method from any
sub class:
 Useful when the method is overriden

 Syntax:
superclass_name::method(parameter…)

class SavingAcct: public BankAcct {

// attributes and other methods not shown
void balance() {

BankAcct::balance();
cout << "Interest: " << _rate << endl; // addition

}
}

Make use BankAcct's balance() method

[CS1020E AY1617S1 Lecture 3] 12

Subclass Substitutability
 An added advantage for inheritance is that:
 Whenever a super class object is expected, a sub

class object is acceptable as substitution
 Caution: the reverse is NOT true

 Hence, all existing functions that works with the
super class objects will work on sub class objects
with no modification!

 Analogy:
 We can drive a car
 Honda is a car (Honda is a subclass of car)
 We can drive a Honda car

[CS1020E AY1617S1 Lecture 3] 13

Subclass Substitution: Example
class BankAcct { …… } // not shown
class SavingAcct { …… } // not shown

void transfer(BankAcct& fromAcct,
BankAcct& toAcct, double amt) {

fromAcct.withdraw(amt);
toAcct.deposit(amt);

}

int main() {
BankAcct ba1(1234, 500.00);
SavingAcct sa1(8888, 1025.00);

transfer(ba1, sa1, 75.00);

ba1.balance();
sa1.balance();
return 0;

}
}

transfer() can work
with SavingAcct object!

[CS1020E AY1617S1 Lecture 3] 14

Pitfalls and Rules of thumb
 Beware:
 Do not overuse inheritance
 Do not overuse protected

 Make sure it is something inherent for future sub class

 To determine whether it is correct to inherit:
 Use the “is-a” rules of thumb

 If “B is-a A” sounds right,
then B is a subclass of A

 Frequently confused with the “has-a” rule
 If “B has-a A” sounds right,

then B should have an A attribute
[CS1020E AY1617S1 Lecture 3] 15

Rules of thumb: “is-a” and “has-a”
class BankAcct {

... ...
};

class SavingAcct : public BankAcct {
... ...

};

Inheritance: Saving Account IS-A Bank Acccount

class BankAcct {
... ...

};

class Person {

BankAcct _customerAcct;
};

Attribute: Person HAS-A Bank Acccount
[CS1020E AY1617S1 Lecture 3] 16

Polymorphism

Poly = Many
Morphism = Forms

Overview
 Substitution Principle
 A more in depth discussion

 Method Binding:
 Static Binding
 Dynamic Binding (Polymorphism)

 Syntax on virtual method

[CS1020E AY1617S1 Lecture 3] 18

Interacting with Objects in C++
 There are 3 ways to refer to an object in C++:

class BankAcct { //...definition not shown };

int main() {

BankAcct baVar(1, 100.10);

BankAcct *baPtr;
baPtr = new BankAcct(2, 200.20);

BankAcct& baRef = baVar;
return 0;

}

…

…

…

…

…

…

…

…

…

…

…

_acctNum

_balance

baVar 1

100.10

_acctNum

_balance 1001.40

2

200.20

baPtr

baRef
1st Way: Object Variable

2nd Way: Object Pointer

3rd Way: Object Reference

[CS1020E AY1617S1 Lecture 3] 19

Subclass Substitution Principle

 Object pointer and reference of class type A:
 Can refer to objects of type A
 Can also refer to objects of subclass of A

class BankAcct { ... };
class SavingAcct: public BankAcct { ... };

int main() {
SavingAcct saVar(3, 300.30, 0.03);

BankAcct *baPtr;
baPtr = new

SavingAcct(4, 400.40, 0.04);

BankAcct& baRef = saVar;

return 0;
}

…

…

…

…

…

…

…

…

…

_acctNum

_balance

saVar 3
300.30

baPtr

baRef
_rate 0.03

_acctNum

_balance

4
400.40

_rate 0.04

[CS1020E AY1617S1 Lecture 3] 20

Polymorphism: Basic Idea
 Since we know:

1. A superclass pointer/reference can refer to an
object of subclass

2. A method implementation can be overridden in
the subclass, resulting in multiple versions

 Question:
 If we invoke a method using pointer/reference,

which version of the method should be invoked?

 C++ provides two possibilities:
 Static Binding
 Dynamic Binding:

 Also known as polymorphism
[CS1020E AY1617S1 Lecture 3] 21

Static Binding
 Use the class type of the pointer/reference

to determine which version of method to call:
 This information is known during compilation time

int main() {
BankAcct *baPtr;
baPtr = new SavingAcct(1, 100.10, 0.01);

baPtr->balance();
......

}

class BankAcct {
void balance() {

// Print out Acct No
// and Balance

}
};

class SavingAcct : public BankAcct {
void balance() {

// Print out Acct No, Balance
// and interest rate

}
};

Output:
Acc: 1, Bal: 100.1

Explanation:
"baPtr" is of BankAcct type,
the BankAcct's method() is
used

[CS1020E AY1617S1 Lecture 3] 22

Dynamic Binding (Polymorphism)
 Use the actual class type of the object to

determine which version of method to call:
 This information is known only during run time

int main() {
BankAcct *baPtr;
baPtr = new SavingAcct(1, 100.10, 0.01);

baPtr->balance();
......

}

class BankAcct {
virtual void balance() {

// Print out Acct No
// and Balance

}
};

class SavingAcct : public BankAcct {
void balance() {

// Print out Acct No, Balance
// and interest rate

}
};

Output:
Acc: 1, Bal: 100.1
Int: 0.01

Explanation:
"baPtr" points to a
SavingAcct object, the
SavingAcct's balance()
method is used

[CS1020E AY1617S1 Lecture 3] 23

Dynamic Binding: Syntax
 To enable dynamic binding of a method in

C++, add the "virtual" keyword before the
method declaration

Sy
nt

ax

virtual return_type method_name([parameters])

 Once a method is declared as virtual:
 it will remain so in all descendant classes
 no need to restate the "virtual" keyword

[CS1020E AY1617S1 Lecture 3] 24

Static VS Dynamic Binding: illustration

 Static Binding:
 The class type R of pointer or reference is used

to determine the method to call

 Dynamic Binding:
 The class type S of object is used to determine

the method to call

R

Object

Ptr S R

Object

Ref S

[CS1020E AY1617S1 Lecture 3] 25

Polymorphism: Example
int main() {

BankAcct *baPtr;
int input;

cout << "Account Type (1:Normal, 2:Saving):";
cin >> input;

if (input == 1){
baPtr = new BankAcct(1234, 100);

} else {
baPtr = new SavingAcct(1234, 100, 0.03);

}

// balance() method should be declared
// virtual in BankAcct class
baPtr->balance();

}

Test Run 1:
Account Type …: 1
Acc: 1234, Bal: 100

Test Run 2:
Account Type …: 2
Acc: 1234, Bal: 100
Int: 0.03

[CS1020E AY1617S1 Lecture 3] 26

Polymorphism: Advantage
 Make code reuse easier:
 If a code is written to use a virtual method of a

class A, the code can work with all future subclass
of A with no modification

 Furthermore, new/extended behavior of subclass
of A can be incorporated by overriding the virtual
method implementation

 For example:
 Code that uses the virtual method balance() in
BankAcct can work with all subclasses of
BankAcct even when the balance() is
overridden

[CS1020E AY1617S1 Lecture 3] 27

Common Mistake
 A common error is to assume the actual type of the

object is used to determine validity of method
invocation

int main() {
BankAcct *baPtr;
baPtr = new SavingAcct(1, 100.10, 0.01);

baPtr->payInterest();
......

}

Compilation Error! Why?

 The data type of the pointer/reference is used to
determine validity of method invocation
 The baPtr pointer has the type of BankAcct
 BankAcct does not have payInterest()

method  error!
[CS1020E AY1617S1 Lecture 3] 28

Polymorphism: Summary
 When we see the statement:

 refR.methodM(); OR
 ptrR->methodM();

 At compile time:
 If the class of refR/ptrR does not have a method
methodM() Compilation Error

 If methodM() is not a virtual method  static binding
 methodM() in class of refR/ptrR is called

 At run time:
 If methodM() is a virtual method  dynamic binding
 methodM() in class of the actual object is called

[CS1020E AY1617S1 Lecture 3] 29

ABSTRACT CLASS
Let's go meta……

[CS1020E AY1617S1 Lecture 3] 30

Abstract Class: Motivation
 With inheritance and polymorphism, we gained

the ability to prepare for future expansion:
 e.g. code working with base class can work for future

subclasses as well as overridden methods

 A new design possibility:
 Design a base class that contains all essential

methods of future subclasses
 Sometimes, this base class is substantial enough to

be a normal class
 But, what if you want to define a base class that is

simply a placeholder (a mold) for future subclasses?

[CS1020E AY1617S1 Lecture 3] 31

Abstract Class & Method: Syntax
 In C++, an abstract method is a method

without definition:
 i.e. intended to be overridden in future subclasses
 Also known as pure virtual method

Sy
nt

ax

virtual return_type method_name([parameters]) = 0;

 A class with at least one abstract method is
known as abstract class in C++
 Cannot have object instantiated
 Otherwise similar to a normal class definition:

 Can have normal methods, constructors etc
[CS1020E AY1617S1 Lecture 3] 32

Example: Redesigning Bank Account
 New design:
 Bank account is now an abstract class
 Two subclasses, the saving account and the

overdraft account
 Highlight only a few key changes

 Overdraft account:
 Allow withdrawal to exceed balance (known as

overdraft) up to a certain limit (overdraft limit)
 Highlight different implementation of core

functionalities

[CS1020E AY1617S1 Lecture 3] 33

class BankAcct {
protected:

int _acctNum;
double _balance;

public:
// no change to constructors
BankAcct(int aNum) {

// no change ... }
BankAcct(int aNum, double amt) {

// no change ... }

virtual int withdraw(double amount) = 0;
// notice that method withdraw has no implementation

virtual void deposit(double amount) {
// no change ... }

virtual void balance() {
// no change ... }

}
};

New Definition of BankAcct

Question:
- What is the impact of these

changes?
- Notice the various form of

methods:
- Normal, Virtual, Pure Virtual

[CS1020E AY1617S1 Lecture 3] 34

Outline of SavingAcct & OverdraftAcct

 Note the implication of design of the base
class in the subclasses
 More details in ADT lecture (L5)

35[CS1020E AY1617S1 Lecture 3]

class SavingAcct : public BankAcct {

protected:
double _interest;

public:
int withdraw(double amount) {
// MUST implement to make
// SavingAcct a normal class

}

void balance() {
// Override example
// Print out Acct No, Balance
// and interest rate

}
};

class OverdraftAcct : public BankAcct {

protected:
double _limit; // Overdraft limit

public:
int withdraw(double amount) {
// MUST implement to make
// OverdraftAcct a normal class

}

void balance() {
// Override example
// Print out Acct No, Balance
// and overdraft limit

}
};

Summary
C

++
 E

le
m

en
ts

- Inheritance
superclass and subclass
method overriding
subclass substitutability

- Polymophism
Dynamic Binding

Reference
 Carrano’ s Book
 Chapter 8: Advanced C++Topics

[CS1020E AY1617S1 Lecture 3] 36

